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Abstract

Various nccessary and sufficient conditions are given for
the existence of codes with preassigned weights. Some

properties of the weight distribution are deduced.
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Introduction

In our study of the minimal weight that the elements of a

K~ dimensional binary group code An,n) of length n can have, one

of us gave [6] an elementary, though long, proof of various existence
theorems for binary group codes. We present here these and other
similar results, relating and deriving them from a well known theorem.
As is often the case, these necessary and sufficient conditions for
the existence of codes are not easily applied: indeed théy require the
‘use of high speed computers already for small values of n and X . VWe
have been able, however, to derive from them some special cases, and
some necessary conditions, of practical utility. These are given in

the last section. Further study in this direction would seem justified.

('dl
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1. Codes with preassigned weight vectors.

Let %, X, oouy Ar, e, X, be the elements of a group code A= A(n, k)
We shall always assume that X, is the zero vector; that Xa., Xevs oovs X ams

are independent; and that the numeration is so chosen that Z,x.}‘; = Xy 2%z,
where the first summation is of vectors over the field of twLo elements.

Let W be the column vector whose Ld' row is w7 , the weight of x; ; i
notice that «w; =¢ 1is not in &/ . W will be called the weight vector of A .
More generally, let W/ be a (217 x| matrix whose elements are strictly
positive integers .« . We will say that W is admissible if it is the
weight vector of some code A .

In order to formulate a well known criterion of admissibility we have

to introduce the following (251, x2¥~1) matrix b . Its row number X
consists, from left to right, of ,‘L"-/ zeros, followed by 2> consecutive
ones, then <" consecutive zeros, then a* consecutive ones..., to
exhaustion; its row number ‘.Z_/’l‘; is the sum mod. 2 of the rows

number ~?k” Jé“, {j(" . It— is easy to recognize that { is the matrix
introduced by MacDonald [1] and used by Fontaine and Peterson [2]. If

T denotes the i2*-+.x (2¥-/, matrix of all ones, one has [1,2]

© ol

¢l IR ac-T

Theorem 1([1,2,3,7]): W is the weight vector of a code A(nw) if, and
only if

1) Zowr = n- M

2) the elements of N = (™' w/ are all non-negative integers.

If \/ is the weight vector of A , N 1is called the modular (representation)
vector of A . If w, is the integer in the (" row of N , and if &
is the matrix whose '{“ row 1is x.z"' , then 6 has n; columns which

represent in binary form the integer i. In particular then Zn‘- =N,

-l.i
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1 01 01 01 01 01 01 01
© 1T 00 11 00111 0011
¥ 1001 1001100110
¢coo0111100O0O0OT1T1T11
1 6011010061011 010
01111 00O0O0OCT11T111 00
11 01001011 01001
0 0o0O0O0OO0OO0CI?1I1111111
1 01 01 011 01101 010
611001111 001100
1 1.0 01 101 0011001
oo 0111111110000
1 0110101 01 001 01
11110011 0O0O0OC0C1 1
11 01 00110010110
The matrix C for x=#.
Letting I denote the (2%~1) x4 matrix of all ones, we can prove:

Theorem 2: \/ is admissible if and only if there is a matrix N , all
the elements of which are non-negative integers, such that
3) W= W+ (Va2 wz)L.

K-t
Moreover, if 3) is satisfied, letting n=2n; one has Z,w; =h-a2

and then |/ is the weight vector of a code Aln k) .,

To prove that 3) is necessary weuse Theor. 1. From 2),
-k K.
N= 2w -2 7w,
but 1) implies IW = n. ' = 2 o

To show that 3) is sufficient, let us first show that 3) implie.
e K-
Zur; = 2" ’an . Remembering that each column of G has exactly <

ones [1], we have

Tew = 2" Tw= M2 w T

[
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on the other hand
2XFIN # (22 )TT = 2¥*Zn I + (% 2z X2%s)I.

Thus 3) implies
- K-z ,
23 e =2 Zny s Ta(2%-1)Z e

&

which yields 1) with h=2 n; . Further ,
iy ~ N .
C'wWea Tew- 2 rwanNs 27 S I -2 T =y _

which is 2); and hence 3) is sufficient. It may be interesting to note that
the necessity of 3) follows also from the "mapping theorem" of Assmus and
Mattson [B]. - . .
If we denote by G the j”‘ row of C , 3) can be written

CW = nj.l"'z v Z,aq i=42, ..., 2=,

2

This relation gives a different interpretation to the integers n; .

If W is the Aweight vector of A(n,k) , the weights not added in the sum
(:3\,/ correspond to the elements of a subcode (or subgroup) of A that
Ched)

HN . In fact the ¢ component of C; can be

we can denote A; (m
considered as the value at Xx; of the jH‘ character (with values O, /
instead of |/, 2/ ). Thus Ze; - C;W is the sum of the weights of the
eléments of AJ ; and hence
Z o - GWe oy 2T
but also . .
2 wz - CJ'W =7 2,/,2. =, P Ll (V?—HJ') -_Lx-a-

Corollary: With the notation just introduced w;=n-w; ; that is n; is
the difference between the "length" of A and that of As‘

To introduce the next theorem, observe that 3) is equivalent to the

statement: 2C:\W — % w7 18 a non-negative multiple of .Z”_I, for all j
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Theorem 3: W is admissible if and only if
4) Z i 1s a multiple of ELi

5) CJ-\\/ is a multiple of 2K for

. LK
5 J=hd, . .., -/

6) AW 2 Zaw, for =l 2, ...,2%-/.
Morenver, if L) - 6) are satisfied and we set (jW = a; .2~'z, 2 = .'zk—:

My~ a; ~" , then N=[nd'.7 is the modular and W the weight vector of a
code Aln, x) .

Notice that 5) and 6) do not imply 4), as the following example shows:

o
ol
2
W = 3 5 K=3
3
e
. L7
Similarly
Mo ]
M
g
wW=1|2/], k=2
o2
2
L;L..

shows that 4) and 5) do not imply 6). And finally L) and 6) do not imply
5) because of the example
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The necessity of 4) - 6) is an immediate consequence of 1) and 3).
Conversely, L) and 5) enable us to write C;W =n, 25t b e E e
and 6) to conclude W;Z o, Hence 4) - G) imply 3). The "Moreover' part

of the theorem is now clear.

2. Furthe.r modifications of Theorem 1.

It is natural toji'k whether the 2“1 conditions of, say, Theorem 2 are
independent and thus all have to be checked. Unfortunately the answer is
yes: the second.example above fails to satisfy Theorem 2 only for j=¢
{(and failiwo-s'a.tig.fy”'rheorem 3 only for condition 6) with j=4 ).
Convenient permutations allow us to modify this example so that it fails

Theorem 2 for any single given value of

g‘,‘this context, the following result may be of interest:

Proposition 1: Given W , let w' be the (2¥'=1)x1 matrix consisting of

- the first 2'-/ rows of W . Then W is admissible if and only if
a) W' is admissible’

b) 2“’: (over W ) is a multiple of 2,

¢) (W is a multiple of 2% for 2% L = 2%,
The proof is an immediate consequence ‘of Theorem 3 and of the dependency -

of ¢ on K as described in [1].

Let us extend the use of a "prime' to differentiate the symbols referring to
the subcode generated by the first X-! generators. If C denotes the
matrix obtained from ¢ by substituting 1 for O and O for 1, then we

" know from [1] that



Parkx MATHEMATICAL LABORATORIES, INCORPORATED T493-SR-5
ONE RIVER ROAD ® CARLISLE, MASSACHUSETTS

T )
| e !
C : -
&
G = 000 |} |11
'
| ! -1
C : C
{

¥ ' '
Let C denote the matrix obtained from G by substituting 1-for O

and -1 for 1. Then clearly .

We: set

-Gm

A|§

-
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2
B
18
5
.
6]

= . “o'—: - = —
. [
N - izy
L)
MG ’ "‘U_;k-l
T S
- .
K = : . S =
/;‘4’ : 4
| a¥-Ly %y
: !
. ., .
L Y n;k-;
o W :
. T = Lo Y = i .
n
L Ay
IR .

W= - w! = R N = [:Cj
> Ll
‘Hl Hl
H = :
: W eyt
. -

ey,
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Lemma 1: ﬁ'= T + V.

Observe that the generator matrix & has w; columns representing the
. -1
binary number 1< ¢ = 2™~ , and W, columns representing the
. AV re .
number 2% ¢ , and that both types are identical except in the last row,

which is the k‘fh generator. Hence, W, = N, + how -

Further ,
o=t
LR
f !
n = - Z_. n;
(::/ .
2Ly
= ~"Z (n; +n )
£ RO
=1 2
—1*:,/ .z{/ L]
= . — n
An‘- ] b'».
L=y . L=2" IR
,2{‘../. .
= V)‘Zk_l ——-Z h, = MR-,(_/ + }70 s
L=/

terminating the proof., .

Lemmd 2: Conditioné-)-.in: VTh.e.c:):r.e'm_.:alisf'.".equivalent: to each one of the
following: . Lo

7). C*w'.+':.;‘*‘.f'/\/:"'=.'o.;_'- |

8) HW " rn"é"‘_’ N =0,
That 7) and 85 are equival'enﬁ:'is‘clear. To show that 3) and 7) are

equivalent observe that ¢t = T-a2c . Thus, since JTW = (E-A-f‘-).r,
7) yields

T - 2CW+ 2" N =0

which is, essentiazlly, 3). This proves also the converse.
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We can rewrite B):

~

obtaining

)

) | R(R+s) + 27 =0

B) . H (R-s) r 27V = n,
Add..ing ~<) and[{) yields '.
R () - e
Rk '

AW e 2 NTo=e

' "w'hi:ch is 8) for: n-1.. The matrix H is a 'Hadamard matrix (see, for example,
~'[8]), and ‘Hence " H = 27 H .- ' ‘ ‘
"’l‘h‘u.s "ﬁ)..b.e.comgs: ’ X

W

RN ' ’ X~
ST H'UGs-R) = RTV
ot L. e .. '

S-R = H'V.
nghave:-
. Theorem )-L:. \,\/. is admissible if and only if there is a matrix V whose
elements are non-negative integers, such that:
a) W' is admissible

b) S-R = H'V

~1
) ¥ -V is non negative, except in the first row.
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The "if" part has been shown above. To prove the "only if" part,

assume that a) and b) are satisfied. Retracing the steps above we

have _
from a) H'R o+ ~.-2.K-‘2'/:7’:‘.=_.c L
and from b) THY(R-s) F 2™V zo ,

. 2
which is /3) . Sqﬁ't;racting, o
H'(aR-R+5)+ 2¥'(~F'-v)=0
or © - ',;',
TR RS) # 2 (N -y = o
which is ») because of e).. But ,-,;) and /5) give: us. 8):‘and hence W is
admissible by Theorem 2 and Lemma 2. ' ' '

. Notice that"a) and _hvj do not.imply c), as the following ;axample shows .

Let .
ro
7 .
3 .
ool 7.
R ARE ENE
‘ o AN # |
’ ) - o
S :

- Theg_r‘em, 2: shows that

"‘is admissible and thadt the corresporiding modular vector is -

: X
N o=|0
o 3

-10-
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By definition

3 2
| * |2
If ‘.07.3 set ' ;'A ‘
2]
v:' E-.'I :
M [ ".
Y
.-then also b) is satisfied:. S-R = H'V . But-g) is not:

Theorem U-has a natural intuitive interpretation which we shall

illustrate by an example for K<3 . Suppose part a) of Thecrem L is

‘'satisfied. That is, there exists a code A' = EX,) Xy, Xy, X3 §
. wo; [n,
with weight vector Vu|: o, and modular vector MN'= n, | . We wish

o N

-11-
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to determine whether Wc is admissible. The admissibility of W ,

rk\ "‘k‘ *x‘ & t}‘ &

ey | i

given that w' is admissible, clearly implies that we can add a ‘

generator X, to A , satisfying four conditions:

i) the weight of

b3

is .

~
*
~

1i) the weight of Xo = X, + X, is vz,

iii) the weight of X «x X, 15 my

and iv) the weight of X,= X+ X ¢ %, is ewr,. |

Let w7 (c'rg /, .zla) be the number of positions in which Xy has ones in

L.
. 4
common with only those generators X-?{J. such that ¢ =2 a . That is,

Xy has a7 ones in positions vacant in both X, , and X , /V'_ones in

’ 1]

positions common to X, but not v,

h, » ~; ones in positions common to X,

but not x, , and ,1); ones in positions which contain ones in both X,

and X, 3 and this clearly exhausts X, . i

Recalling that 4o zo , we can translate the four conditions i) - iv)

into equations:

1.1
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%
vy
Collectiny the «wi's and setting v = o~ |» we obtain

F 5

AfjJ
r - r T
AL - to 1 1
AN — I N

= M.

AL =, i Y By
A m ‘ Y YA IJ

The left-hand member is S-R , and the matrix of coefficients of V
is H! , so this equation is precisely part b) of Thecrem 4. The A
rejuirement in Theorem 4 that V be of non-negative integers follows
here directly from the definition of the A7 . Moreover, since each
A counts positlons from among those counted by the corresponding H; ,
it is clear that for c¢yo , ap £n: , which is part c) of Theorem L.
It can be seen quite easily that these conditions on the A7 are both
necessary and sufficient for the admissibility of W . They can be
shown by induction to hold for any K . In fact, it was this
elementary apprnach of comparing a new generator with each previous

generator that first suggested Theorem 4 to us.

-12~
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3. FEquivalence of weight vectors.

Because of the numeration involved in associating W to a code A,
different weight vectors correspond to one and the same code. On the
other hand if W is the weight vector of A (with a given numeration),

W is also the weight vector of any code equivalent to A . We have thus
a "many-to-many" correspondence between admissible vectors W and codes.

To obtain a one-to-one correspoudence we consider only equivalence classes
of codes and equivalence classes of vectors, defined as follows. Two
admigsible vectors W, w' are called equivalent if they are weight vectors
of equivalent codes. The remark above enables us immediately to say

also that W and \/' are equivalent if and only if they are weight

vectors of onme and the same code A (for two numerations of its elements).

Proposition 2 \A/l=LLujL]_and W&= [.44!_;‘_] are equivalent if and only if
there is a permutation § %f_ﬁl_, 2., 2¥~1} such that 4« = s,

and such that if o (2%=2 Gy 2% 4;0 =0 ¢ then

L=o 2

koo ¢

. K-l
. ﬁ'(z aZb")=Z_(Z_? Q;.&)olg , where > denotes sum modulo 2. It is
.. L M

enough to prove that these properties characterize the changes in
allowable numerations of the elements of a code A . Let then X ,x,,...,
. +.,... denote the elements of A , in two different orders, but
A B BRI

such that

For some permutation ¢ we have 4L )(m,:) .

In particular
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|

Conversely, let x,, x be an allowable numeration of the elements of

2 B .
A, and let g~ have the properties of the proposition. Set Y= Xpry, - ‘
To prove that ,«%,, Afats <oy Bowes BTE independent, assume “,Z‘ Fois =0

Then

S G e X =25 A, X g =222, , )X 4.
Co=7irafiy= § % 2% =T F Fgu Mak = g U sa ) Kt
Since X, , Xpis e x&_.‘_, are independent. Eﬂgj.;; =5 for each % . and
A v

(s.<2“)=r , which is not possible since ™ is a permutation. Thus

-

indeed the vectors %; are independent,

Moreover

P ’ - Z«Z—a' X.‘ = X { = 2y == :
She Ll "x\rgf‘_.\‘i) R “*‘"JZ Za;, . ot “J-ZXJ‘(A‘*)"‘;Z “Hais

5

If we denote by T the (') x(2*) permutation matrix corresponding

-
to the permutation ¢ of Prop. 2, we can write W, = 7_W, . The
matrices T so obtained have been denoted F, in [2]; our Prop. 2 can
also be obtained from the definition of ¥, . Moreover, in [2] it has
been shown that to every ¢ there corresponds a ¥ , also with the

properties of Prop. 2, such that

T.C = C'I;
If then W,= 7 W, and N= e, T‘L =Cc'W, we obtain
T R — Yy —
HJ'-TC_ /mM/I= /’!‘C k/'== /’E/Y['

This establishes the

Corollary [2] Let A, A, be two codes, W,, W, and N, N, their weight

and modular vectors. Then the following propositions are equivalent:
a) A and A, are equivalent codes;

b) There exists a permutation ¢ as in Prop. 2 such that

Wz" 7;‘\’\/1 J

c) There exists a permutation ¢~ as in Prop. 2 such that

N, =T.N

N A I

-1k~ V
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From this one can easily deduce the following almost obvious result:

Proposition 3  Let N= [n;] be a(&K— 1)x1! matrix whose elements are
non-negative integers; chen N is the modular vector of some code
Ava k) if and only if there exists a permutation ¢~ as in Prop. 2

such that Neai) & o for €=0,/,..., K=t.

4. some consequences of Theorems 1 to k.

Given W*E,ur:.]; let d,d; be non-negative integers verifying
d* min a7, J;: w:‘;—d

and set

D= \J\I“JI =[J;].

In general only the case d=min 4r; will be of interest. However, we

need establish the results below also for dz min A so as to obtain more

flexibility and, in particular, to be able to use induction arguments.

The relations 1) - 7) yield equivalent relations:

3 Co = ‘,LK—LN-# 2 (ZJ;*J)I.

e EAL—J is a multiple of 2%/,

5') C‘-D is a multiple of -2"-2' for =1/, 2, vee, .zk—/
6') ,ZCJ-DZZJ‘-—J for  jmi, 2, ..., 27—,

7)Y C’o-dI + 2N =0,

Relation 8') and Theorem 4 can also be rewritten in terms of cl; with

very little change.

It may be interesting to point out the substitution of Z,aq with Zc(;—n./ .

We shall say that (0, d) 1is admissible if and only if W=D+dI is

admissible.

-15+

)

2') the elements of C'D +,z,'-K<1I are all non negative integers.
)
)

g eradln o
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Proposition 4. Let d,# o for at most two subscripts 1;'_' £, - Then
(D,d) is admissible if and only if au;,, ‘J*; , d-do + .,1;‘ 5 4*4‘./ -dy
and d _c),;' - J‘:z. are non negative multiples of 2%/

Without loss of generality we can assume ‘/""/: ‘;.' 2 by taking an

equivalent weight vector. Then (see the definitiom of C) £,p = d,,
Vad — — .
‘,*Dzva{” (;D = J, + c/L , and (."D..o . Moreover all other C;b
have one of these four values,

We can write 3') as

K~/
-d, = d, +d * 2D 2T,
Hence the proposition, which has the known

Corollary The only codes A (n, k) with all elements of equal weight
(d;=0 for all L) satisfy dax L 2%, n=A (a%-s).

Proposition 5 Let K33 and d:#0 only for L;, 4 f—; . Then (D,J) is
admissible if and only if d- J;’ + J;,‘ + J,'J , d+de - J;‘ - J,", ds J‘; %J‘,. - 0‘;’ 3
and d-d; —d; - d;  are non negative multiples of 2,

We can reduce the general case to either of two special ones:

a)b;-/, 42, 6z 3 sorb) =/, =3, 4= ¥

In case a), CD=d+d, , CD=of 44, _C_‘,D-c{44‘ , C b=o

and all other CJD have one of these valugs. Our result them follows

as above from 3'). 1In case b) we have G D = d,+ 4, , CD=d+o,,
QD:%;O;‘ , Gp=o ; hence, again from 3'), the conditions of

the propositior are necessary; by a) we know already that they are sufficient.
The assumption K>3 1is required to insure the existence of C, . Similsr
results can be obtained for increasing, but always small, number of non-

zero c)l_"s. They can all be considered as particular cases of 7').

The function Zc/‘; has some interesting properties. The first is a

generalization of the Corollary to Prop. 4, which considered the case
ZJL' =Q

Proposition ’6 Let 4(",,() be & code with weights (b) J)' . Yhes, fer
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some integer &, nw 23d; +%4(2%1) and d.ZJ; 4% 25’ . Moreover
£ze if and only if 34. = 2%’ .

From 4') we obtain J. Sd4; +£ 2%’ and then from 1') po ad + ‘::j%j_—jl—- =
2%.d; +£(2%:;). Solving the first relation for Zd, we obtain )
2d;=d-1 2. Thus 3J; = 2%-! is equivalent to £>o . Since

N-adw-%&, we have also:

-
Corollary n<a2d if and only if Zd; ¢ 2*

-1
The relation Zd: = .zk restricts considerably the possible values

of Zd .

w- -
Proposition 7 If (D,d) is admissible and 2d; < 2 , then Zd. =0

or Zc{ =~'£Z &% for some rZo .
=

K-
Assume 0« 2d; <2 . Then, for some j, 0« CJ-D_‘:ZJ,; . Since

2,

C;® is a multiple of 25, Z2d Z 2% If the equality sign holds,

we are through. Similarly if C:DZ 2% > . S0 assume C:D= 2" "< & J. ~ 2%’
) J 12

We have then © <« Z4; - Cavb 4 2%% | But the middle term is the sum
of the JL 's for the subgroup A_;‘ . Using induction we have then
K=

3 -2 )
ZJ,_CA-D=Z‘,2’£) Zd; =2 2%
& r r

To complete the proof, let K=2 . Then the proposition states Zd; =0,
or Zd:'Z2 : a triviality. Relation 1') yields:

Corollary 1
Cl“ ha -

§-/
; however

This is an improvement on Plotkin's uppexr bound [Zi‘

both bounds agree "almost everywhere'.

Because of Proposition 6 we obtain also:

-1
Corollary 2 If 3 < 2%' , then n= 2%/,
LoroLiary < /; »
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Thus, if we ", the A of Prop. 6 is strictly negative:

Corollary - If n< .z"" , then d = [h—l )
Z

That the values ot Za}“ given in Prop. 7 are actually taken (and then
n and 4 are given by Prop. ©) is shown by the codes described by
MacDonald {1} and McCluskey [~]., among others. Nz
# Z e

e=pP

. = ¥l
It is posrible to prove, in parallel to Prop. 7, that 23 =a

- . N-? < . K-t k-2
for some vZ ~ , if 2 - —dy 42 2

But this result does not seem interesting: the application of Prop., ©
in this case does not determine w and Zd; can, and often does. exceed

A2 o 0 alse for small values of w .
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